LOCO Codes: Lexicographically-Ordered Constrained Codes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Linear Ordered Codes

We consider linear codes in the metric space with the Niederreiter-Rosenbloom-Tsfasman (NRT) metric, calling them linear ordered codes. In the first part of the paper we examine a linear-algebraic perspective of linear ordered codes, focusing on the distribution of “shapes” of codevectors. We define a multivariate Tutte polynomial of the linear code and prove a duality relation for the Tutte po...

متن کامل

Nested input-constrained codes

constrained systems, deterministic encoders, finite-state encoders, input-constrained channels, nested encoders An input-constrained channel, or simply a constraint, is a set of S of words that is generated by a finite labeled directed graph. In the context of coding, the study of constraints mainly aims at designing encoders that map unconstrained input words into words of S in a lossless mann...

متن کامل

Weakly constrained codes

We report on the performance of a new class of constrained codes, called weakly constrained codes. Weakly constrained codes do not strictly guarantee the imposed channel constraints but rather generate codewords that violate with given (small) probability the prescribed constraint. Weakly constrained codes are speci cally of interest when it is desirable that the code rate R = p=q is very high ...

متن کامل

Trellis-constrained Codes

We introduce a class of iteratively decodable trellis-constrained codes as a generalization of turbocodes, low-density parity-check codes, serially-concatenated con-volutional codes, and product codes. In a trellis-constrained code, multiple trellises interact to deene the allowed set of codewords. As a result of these interactions, the minimum-complexity single trellis for the code can have a ...

متن کامل

Constrained Three-Dimensional Codes

A n upper bound on t h e capacity of constrained three-dimensional codes is presented. T h e bound for two-dimensional codes of Calkin a n d Wilf was extended to three dimensions by Nagy a n d Zeger. Both bounds apply to first order symmetr ic constraints. T h e bound in three dimensions is generalized in a weaker form to higher order a n d non-symmetric constraints.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Information Theory

سال: 2020

ISSN: 0018-9448,1557-9654

DOI: 10.1109/tit.2019.2943244